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THEORETICAL STUDY OF THE TUNNEL-BOUNDARY LIFT INTERFERENCE DUE TO SLOTTED
WALLS IN THE PRESENCE OF THE TRAILING-VORTEX SYSTEM OF A LIFTING MODEL !

By Crarence W, MaTTHEWS

SUMMARY

The equations presented in this report give the interference on
the trailing-vortex system of a wuniformly loaded finite-span
wing in a circular tunnel containing partly open and partly
closed walls, with special reference to symmetrical arrangements
of the open and closed portions. Methods are given for extend-
ing the equations to include tunnel shapes other than circular.
The rectangular tunnel 1s used to demonstrate these methods.
The equations are also extended to nonuniformly loaded wings.

An analysis of the equations for certain configurations has
shown that: (1) only o small percentage of slot opening s
required to give zero interference conditions if the tunnel con-
tains four or more slots; (2) in the configurations studied, the
ratio between the slotted-tunmel interference and the closed-
tunnel interference at the center of the tunnel is approximately
constant for various model spans; and (3) tunnels containing
an odd number of slots or nonsymmetrical slot arrangements
cause an additional rolling moment or a cross flow on the wings,
or both.

INTRODUCTION

In a study of solid-blockage interference (see ref. 1), it has
been shown that tunnels containing mixed boundaries, that
is, partly open and partly closed walls, will eliminate or
greatly reduce such interference. Since the slotted tunnel
configuration required to eliminate solid blockage can not
climinate lift interference, it is necessary to study the inter-
ference on the trailing vortices of a lifting model in order to
malke the necessary corrections to the lift characteristics of a
model.

The problem of one or two slots has been treated by various
authors (see refs. 2 to 4). The case of more than two slots
has also been treated in references 5 and 6. Reference 5
treats only small wings in circuler tunnels, and reference 6
treats only the case for a large number of evenly spaced slots.

The purpose of this investigation is to present equations
which expiess the tunnel-wall interference due to mixed open
and closed boundaries in the presence of the trailing-vortex
system of a finite-span lifting model at subsonic velocities.
Special attention is given to test sections in which the slots are
symmetrically located with respect to both axes.

Various extensions of the theory have been made and
follow in a general fashion the methods of reference 5. These
extensions include the effects of wing span, slot configurations,

1 Supersedes recently declassifled NACA RM L53A24, 1053,

interference at points near the center, nonuniform loading,
and methods for calculating the interference in tunnels of
other than circular cross section.

Numerical calculations of the interference characteristics
of several symmetrical cases are presented and are used to
show the properties of the interference of circular tunnels
containing 1, 2, 4, 8, and 12 slots symmetrically located with
respect to the z- and y-axes and a square tunnel containing
8 slots symmetrically located in the top and bottom walls.

SYMBOLS

A,, By,

s, by, } constants

tny Bn

b span of wing

half-gpan of wing (see fig. 1)
c tunnel cross-sectional area
C lift coefficient of model
s

e=7

AGp drag increment due to interference

D tunnel diameter (gee fig. 4)

ds tangentiel line element

k quality factor, the ratio abt any given point of the
interference of a slotted tunnel to the inter-
ference of a closed tunnel with the same cross
section

l half-span length of wing in ¢{-plane (fig. 1)

m number of slots or panels in tunnel

g, m, 3, ¢ integer denoting indices of summations and mul-
tiple products

P special number defined in expression (2)

r radial distance of point from coordinate center

B radius of circular tunnel

S model or wing area

% z~-component of velocity

v y-component of velocity

14 magnitude of velocity

v velocity vector

z, Y coordinates of rectangular system (fig. 1)

z complex variable, z-1iy

%D complex velocity, u—ip
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T circulation about & point, positive in counter-
“clockwise direction

v function of 6, and & (see eq. (32))

) proportionality factor used in equation for e

& interference correction angle to be added to meas-

ured angle of attack, %OL (see ref. 7)

o strength of a source

¢ complex variable in transformed plane

6 angular coordinate of polar system (fig. 1)

6, polar angle of slot edge

¢ complex function of z (z=¢?)

A parameter defined in equation (106) (also see para-
graph 14.8, ref. 8)

@ perturbation potential

Op derivative of potential in direction normel to a

on given line

Subscripts:

c closed tunnel

I interference condition

N nonuniformly loaded

U uniformly loaded

THEORY OF LIFT-YORTEX INTERFERENCE IN SLOTTED
TUNNELS

GENERAL ANALYSIS

Theoretical boundary conditions of flow about trailing
vortices in a tunnel containing mixed open and closed
boundaries.—The equations for the interference on the lift
of a model due to mixed open and closed tunnel walls in the
presence of a trailing-vortex system may be obtained by
considering the same two-dimensional approximation of the
flow field that is used in reference 7. The conditions of this
two-dimensional approximation may be briefly stated as:
(1) the tunnel and its boundaries extend from 2 point an
infinite distance upstream of the model to & point an infinite
distance downstream of the model; (2) the velocities induced
by the trailing vortices in the cross-sectional plane located at
the model are one-half of those induced in & far-downstream
cross-Sectional plane; (8) the induced-velocity flow field
in the far-downstream section may be treated with two-
dimensional methods; (4) the boundary condition which must
be satisfied at a solid portion of a tunnel wall is that the flow
must be tangential to it, or

Op__
v @®

(5) the condition which must be satisfied at an open portion
of a tunnel wall is that the potential over that portion must
be constant or the flow must be normal to it; (6) no singulari-
ties other than the frailing vortices can exist within the
boundaries of the tunnel; and (7) the constant potential in
every slot must be equal to that in every other slot. The
final condition is required because the pressure is the same at
every slot and is shown by the following considerations.
Since the pressure is constant over the entire region outside
the tunnel there will be no pressure differences between the
slots at & point far upstream, and hence there can be no flow
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between the slots due to external influences. Also, since this
point is too far from the model to be influenced by it, there
can be no flow due to the model. As there is no flow between
the slots, no potential gradient can exist between the slots;
therefore, the potentials in all the slots must be the same.
It therefore follows by condition (5) that, in the far-down-
stream position, the constant potential in every slot is equal
to that in every other slot.

Coordinate system used.—The coordinate system used in
reference 8 is also used throughout this report. In this
system, it is expedient, in order to avoid confusion with the
customary notations, z-1iy, to use as axes of reference the
following system: z-axis to the right, z-axis downstream,
and y-axis to form a right-hand system. Since the z-axis
is not used in the calculations, it is possible to use the complex
coordinate z=z--iy without confusion. The velocity com-
ponents are denoted by u in the z-direction and » in the y-
direction. The symbol w is reserved for the complex
potential.

Velocity flelds in circular slotted tunnels.—The previously
stated boundary conditions may be satisfied by using
complex velocity functions rather than complex potential
functions. This is done by selecting a complex velocity
function that has singularities at the wing tips and a flow
direction either normal or tangential to the tunnel walls. If
this function is multiplied by another complex function
whose value on the tunnel wall changes from all real to all
imaginary (or the opposite) at each slot edge, then the flow
will be rotated 90° at those points so that the final flow of the
product of the two functions will be normal to the wall on
selected portions and will be tangential to the wall on the
remaining portions. It can, however, be expected that the
second function will introduce within the tunnel singularities
which are not permitted according to the stated boundary
conditions, so that a third function which contains all the
forbidden singularities must be used in such a fashion that it
will cancel the forbidden singularities of the second function.

In order to make up the first function, suppose that the
two singularities at the wing tips with their reciprocal
singularities are written as 1/(z*—s*) (1—2%%), where 2 is
the complex variable z--iy and s is the semispan of the lifting
wing. If this function is examined by letting z=¢%, where
0 is a polar angle (fig. 1), it will be found that the flow may
be made normal to the walls if the factor z is included in the
numerator. This flow may also be made tangential to the
wall by multiplying by the factor 2. Thus, the first function
may be written

pz
== @

The symbol p can be chosen to be either 1 or 4, depending on
whether normal or tangential flow is required at the walls.

The second function can be developed by considering the
square root of a function which is real on the wall and changoes
sign at each slot edge so that the square root of the function
changes from real to imaginary at each slot edge. Such a

function may be expressed by \ [cot g——cot% where z=e"

and ¢ is in general complex. Examination of this function
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Fiaure 1.—The coordinate system used for the investigation of the lift
interference due to slotted tunnels.

shows that it becomes \ [cot %—-cot %’ on the tunnel wall,

whero 6, is the polar angle of a slot edge (see fig. 1). The
term under the radical changes from positive to negative at
0=06, so that the function changes from real to imaginary at
the point 6, on the tunnel wall. If & number of these func-
tions having different 6,8 marking the transition from open
to closed sections of the tunnel wall are multiplified together,
it can be seen that the product will change sign at each value
of 6, so that the function will be real on alternate sections.

This use of cotg- also suggests the use of other complex trigo-

. . . ¢ .
nometric functions such as cos ¢, sin #, and tan -~ Thesine .

2

and cosine terms will, on examination, be found to introduce
two slot edges for each value of 6,, rather than one. Thess
two slot edges will be found to be located symmetrically with
respect to the z-axis for the cosine term and to the y-axis
for the sine term. Thus, the use of these functions is sug-
gested for symmetrical slot configurations.

Since any of these functions may introduce singularities
within the tunnel, it is necessary to examine them for such
singularities. The four functions may be written as multiple
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products of the form
I1-/e0s 7—cos; =

ycos #—cos 6y y/cosF—cos b, . . . \Jcosd—cosd, (3)

with equivalent.expresssions for

1 ysin 9—sing, @

g=1
g 3 6,
q:E[l cot 5 cot Bl (5)

and

[t 1 /tan S—tan %
g]}l t;a.n2 tan2 ()

When z=¢*? is substituted for ¢, the expressions (3), (4), (5),
and (6) become, respectively,

a
2= z~42 ] \/2+1—2zcos9, )

g=1
9-wiz-u-a1 T[ F—1—2izsm0, ®)
g=1
o2 & . b,
(z—1)~2 ]:[1 \/ (z+1)—(z—1) cot—?: )]
g-

(z+1)-w3i-22 aﬁ[l ‘/ (z—1)—i(z+1) ta.n% (10)

Examinations of the functions (7) to (10) shows that they
contain forbidden singularities at the following values of z:
the cosine and sine terms at z=0, the cotangent term at
z=1, and the tangent term at z=—1. Several functions
which contain singularities identical to those appearing in
functions (7) to (10) and which are real on the tunnel are

% (@ cOS NS+b, sin ) a1
which has s singularity at z=0,

2 wtisd ot () 2
which has & singularity at z—1, and

B tig) tan(3) (13

which has a singularity at z=—1. In the expressions (11),
(12), and (13), @a, au, ba, and B, are real constants. It may
be seen now that if the trigonometric series is divided by the
multiple product which contsins the same singularities, the
forbidden singularities will be canceled out of the final equa-
tion and an equation will be left which has only the desired
singularities within the tunnel.

The reason for using the multiple product in the denom-
inator may be seen by examining the flow about the slot
edges. Since the flow must turn a sharp corner as it goes
around the edge of each slot, the velocity must be infinite
at that point. Since the multiple-product function becomes
equal to zero at each slot edge, it must be placed in the
denominator of the final complex velocity function to insure
the required infinite velocities.
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Before the final complex velocity function is written, it
should be observed that function (2) has a zero at the point
2=0 which must also be removed either by including an
extra term in summation (11) or by multiplying summation
(12) or (13) by @, cos ¥-+b, sin ¢. With this relationship in
mind, the final complex velocity functions meay be written:

$n
d pz >, (@, cos nd+b,sin nd)
= 19
@ (22—s) (1—2%?) 1T v/oos 9—cos 6,
g=1
I+
d 2z 2 (@ c08 nd+ b, sin nd)
W nm=( (15)

dz (Z2—8%) (1 —2%?) ﬁlvsin 9—sin 6,
g-

d P70 003 9+bi5in ) 25 (et i) cot(3)

2 16)
? (FF—8&) (1—2%D ﬁ .‘/cotg—cot%
g=1

and an equation similar to equation (16), where tan gis used

rather than cotg-

In the application of these equations, each value of 4, is
noted to introduce two slot edges into each of equations (14)
and (15) and only a single slot edge into equation (16).
Since each panel has two edges, ¢ must be equal to the number
of panels m in equations (14) and (15) and to twice the
number of panels, or 2m, in equation (16). Also, if equation
(14) or (15) is applied to tunnels containing an odd number
of slots, if will be found that the singularity arising from the
multiple product will contain & term of the order ¥, which
cannot be removed by the summation. TIn order to remove
this singularity, the summation of equation (14) or (15)
must be rewritten as

w1
2
s (a, cos 2”; ! 91, gin2ntl a) a”

n=0, 2

This series will, upon examination, be found to contain a
singularity of the order ¥, which will cancel the one-half-
power term due to the extension of the multiple product
over an odd number of slots.

Equations (14) and (15) introduce slot edges at locations
symmetrical to the z- and y-axes, respectively; thus, it is to
be expected that the use of these equations for symmetrical
cases will simplify the problem. These equations will not
work, however, for nonsymmetrical cases as they will intro-
duce slots at points where they are not desired; therefore, it
is necessary for the general case to resort to the more com-
plicated but completely general equation (16). Equation
(16) can be used for symmetrical cases; however, the expres-
sions resulting from its use can be reduced to the forms
obtained from equations (14) and (15).

In order to make the final application of equation (14).
(15), or (16) to & wind tunnel, the arbitrary constants of the
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summations must be evaluated. This evaluation can be
effected by using the remaining boundary conditions, which
require that the potentials in each slot must be equal to
each other and that only a vortex flow can exist about the
singularities within the tunnel.

The potential condition can be evaluated by the following
line integral:

(=2, v2)

Gy 5 V-ds=:pa2,y2)—qo(zl,,l)=0 (18)
in which the limits of integration terminate in the slot. One
path which can be used is the streamline which flows along
the panel. When this streamline is used as the path of
integration, equation (18) becomes

Ont1

V df=pn11—0a=0 19

On

as the potential is the same over all slots. Since the velocity
V will in general be complex, two equations exist for each
panel.

The strengths of the circulation about a pole and of the
source at & pole are fixed by the relation,

. dw
r+w:9€;l;dz (20)

where T is the circulation due to lift and ¢ is the sourco
strength and is equal to zero. Since equation (20) must be
evaluated about each pole, it gives four equations which
maey be used to evaluate the constants.

The set of boundary equations (19) and (20) may be con-
sidered as a set of simultaneous equations in the unknown
constants found in equation (14), (15), or (16) and is used
to determine the values of these constants. If these con-
stants are to be uniquely determined, there must be as many
equations as there are constants. An examination of equa-
tions (19) and (20) shows that equation (19) gives 2m
equations and that equation (20) gives four equations,
making a total of 2m-}4 equations which may be used to
determine the unknown constants. Thenumber of constants
which must be satisfied is determined from an examination
of equation (16). The paragraph following equation (16)
shows that ¢ must equal 2m, so that the number of constants
must equal 2m--4; hence the number of equations and the
number of constants are equal, so that all the constants are
determined and & unique solution is obtained for the problem.

DERIVATION OF EQUATIONS

Slots symmetrically located with respect to the z- and

- y-axes.—In the case of symmetry about the z- and y-axes,

considerable simplification results. Equation (14) can be
used in place of equation (16). In equation (14), each value
of 6, in the multiple products can be used to produce four
changes of sign, provided these products are written as

mfa
I +/cos® 9 —cos? 6, 21)

g=1
mf2 .

I /sin*¢—sin%, (22)
g=1
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These changes of sign are observed at 6, —6,, »—6,, and
w0, or one in each quadrant. Hence, if the values of 6,
are known in one of the quadrants, the multiple product need
be extended only over that quadrant, as all the other slots
will be automatically introduced. If the slots are evenly
spaced and of equal width, function (21) or (22) can be
replaced by

—\/ cos? -722 d—cos? -73 6; (231)

or

\/ sin® 3 9—sin? 36, (23b)
Expressions (23a) and (23b) can be shown to produce slots
which are evenly spaced and of equal width by thesubstitution
of

whero

for ¢ in expressions (23a) and (23b).
When this modification is taken into consideration, equa-
tion (14) then may be written with the substitution of

365
which may be reduced to
m m 1 m + m
—1 2 —n+1 -+1
w 2 PD [a,,z2 (@ 1)—ibyz? (zz"—l):l
dz w2 (25)

(2—8)(1—2%% ]:[1 +2*—22 cos 26,+1
o

where the factor p is equal to 1 if slots intersect the z-axis
and is equal to 4 if panels intersect the z-axis. If the slots
are evenly spaced, and of equal width, the function

A/Z"—22" cos mo,+1

can be substituted for the multiple product in equation (24)
or (25).

The constants of equation (25) must be evaluated by using
the boundary condition for the equality of the potential in
each slot (eq. (19)) and for the circulation and nonexistence
of sources (eq. (20)). Equation (20) is evaluated by applying
Cauchy’s integral theorem to equation (25) to obtain the
required line integral of dw/dz. This evaluation gives, about
the positive pole s, ’

z_ _H Zah O _at1
2= gs 2rip2? [ (6*+1)—1b,82 nt (s’"—l)]
%’_|.1 I'+4io=
221 ., 2—1 ‘ — 4— 2%
o pz,,z..()) s ib, 5o 2s(1 s‘)aI_[le 25 cos 26,11
a2 ) gprica 702 cos 20,1 o )
(¢ T 008 and about the negative pole —s
m_ _H ——n+1 . E—‘u+1 2
27ip2? Z ax(— s)"’ [(—8)*+1]—ibs(—s8)? = [(—8)**—1]
—T—io— @7

mf2
—28(1—s%) II +/8*—2s* cos 20,41
g=1

The circulation (eq. (20)) is determined by setting I' equal to
the real parts of equations (26) and (27) while the nonexist-
enco of sources is assured by setting the imaginary parts of
equations (26) and (27) equal to zero. The condition on the
potential (eq. (19)) is satisfied by letting 2=e® in equation
(14), so as to obtain the velocity along the panel streamline,
which is a convenient streamline to use for the evaluation of
equation (19). Equation (19) then becomes

FH
Z (@, cos nf—1ib, sin ne) do

0 f
ranel (1 —92s? cos 20-+-5%) 1111/0055 6—cost 6,
ﬂ_

28)

dw_ psT(1— s‘) I[ Js‘—Zs’ cos 26,+1

dz

w(2—s)(1— z’s’) I[ Jz‘—zz“ cos 26,1 ""0

where the notation fpan ; Indicates integration over a panel.

Separate equations are then obtained, one for each panel.
The constants @, and b, can now be evaluated by considering
equations (26), (27), and (28) as a set of simultaneous equa-
tions in @, and b,.

In solving equations (26) to (28) for @,, it is observed that
a new constant «, appears; thus,

= oty M 1I +/s*—2s% cos 26,1

7‘_2-2——1 g=l
A corresponding-relation between b, and a new constant
Bx also appears. With the substitution of these new con-
stants a, and B,, equation (25) may be written

=

(29)

m

[ ——n+1

(D) —ifoe? " (2 (30)
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and equations (26), (27), and (28) become, respectively,
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. 24 m pL)
e I R e ] @10)
1 T+ LA o1
—§=ﬂ2_0 {an(—S) T [(—e) 1] —iBu(—8)2  [(—8)**—1] } (31b)
%—I—l
>3 (aa cos n—i8, sin nb) do
5=0 (31c)

o -
paxel (1 —2¢% cos 2089 I[lw,/ cos® 6—cos? 6,
g-

Examination of equations (31) shows that a number of
the @,’s and B8,’s are equal to zero. This is shown by first
considering the nature of the simultaneous equations (31).
The equating of the real and imaginary parts divides the
entire set into two separate sets of simultaneous equations,
one of which involves «,’s only and the other 8,’s only. When
o is chosen, one of the sets will be homogeneous whereas the
other set will contain two equations with constant terms
equal to —1. Thus, one set of constants becomes equal to
zero whereas the other set has values which may be different
from zero. This remaining set of equations can be reduced
by considering the values of the integrals across any one of
the panels and its counterpart which is symmetrically located
with respect to the y-axis. It can be shown that these in-
tegrals will have the same absolute values and the same sign
if n is even but opposite signs if # is odd. The same feature
is also observed in comparing equations (31a) and (31b);

that is, if%—n+1 is 0dd, then the terms which contain b to

that power will have opposite signs whereas the remaining
terms will have the same signs. By adding or subfracting
equations (31a) and (31b) and the equations for the integrals
across each of the symmetrically located panels, the set of
equations in a, (or in 8,) may be reduced to two new sets,
one of which contains the odd values of » and the other the
even values of n. Again one of these sets is homogeneous,
and one equation of the other set has a constant term equal
to —1 so that all the constants associated with either the
odd values of n or the even values of # will be equal to zero
and the other set will have values which can be different
from zero.

This analysis shows that one of four sets of constants oy,
41, Bay, a0d Bayq can occur, so that four different symmetri-
cal slot configurations are suggested. The possible sym-
metrical configurations which can occur are (case I) panels
intersecting both axes, (case IT) slots intersecting both axes,
(case III) & panel intersecting the z-axis and a slot intersect-
ing the y-axis, and (case IV) a slot intersecting the z-axis
and a panel intersecting the y-axis. These conditions are
found to occur when the tunnel has 45 slots with » equal to
4 (case I) or 1 (case II) or 2(2j+1) slots with p equal to <
(case TIT) or 1 (case IV). "Since there are four sets of con-
stants and four different symmetrical slot configurations, it
is to be expected that each set of constants can be associated
with one of the symmetrical slot configurations. When

equations (31) are set up for each of the symmetrical slot
configurations, the following associations are found to exist:

Case I (panels intersecting both axes): the oy, set has
values different from zero.

Case II (slots intersecting both axes): the By, set has
values different from zero.

Casge ITI (panel intersecting the z-axis and slot intersecting
the y-axis): the oy, set has values different from zero.

Case IV (slot intersecting the z-axis and panel intersecting
the y-axis): the 8, set has values different from zero.

Equations (30) and (31) can now be written by using only
the constants which may have values other than zero. How-
ever, equations (30) and (31) can be written in a more
symmetrical form if the solution is carried a step further.
The equations for the set of constants that are used for a
given configuration may be written, by using the set asy; a8
an example,

—l=aYorFasYoat . . . ag4170,2541
O=a;TutoagYist . . . g1V, 2541 (32
O=0ayVutas¥ast - . - aas4172,2041

where the v’s are the corresponding functions of 6, and s.
Now consider as a matrix the coefficients of the right-hand
side of the equations whose constant terms are equal to zero,
and let A;, As, 45, . . . be equal to the determinants, re-
spectively, which remain after the column that corresponds
to the number 2j+1 of the constant Assy;is removed. Then,
using Cramer’s tule,

- —4,
N AN —AYat - .. (—1)?Agspxo 2141
= A{Yol—Ag'Yos"l" PR (—1)1A91+1'Yo.21+1

(33)

with corresponding equations for the remaining values of
Gay41

When the solution for each constant (eq. (33)) is substi-
tuted into equation (30), it can be written

m/2
i —pbI'(1—s9 I +/s*—2s* cos 20,1
AD g=1

o OMNED

A(A—)(l— 2 ﬁ@—zé o05 20,71
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where f(2) is determined by one of the following equations,
the choice depending upon the symmetry of the desired slot
configuration:

For case I, or panels intersecting both axes,

;ﬁ_; (—1)Agyp12Z 2D 1]
f(z)—% e
(—1)Agy:87 [82654D 1 1]

Jj=0

(352)

For case I1, or slots intersecting both axes (note that in this
case as well as in case IV, B has the same relation to 8 as .4
has to « in the demonstrated case),

ml4 n_
033 1Byt )
=0
J@= 2 7,
=0 (—1)Bysa8? [82*HD—1]]

(35b)

For case III, or & panel intersecting the z-axis and a slot
intersecting the y-axis,
mt2 -
4 =

33 Dyt ()
f@=gz

< m_

33 (—1)dasn i a0t)

(35¢)

For case IV, or a slot intersecting the z-axis and & panel
intersecting the y-axis,
mt2 m
4 —_—
437 (—1)Bayz? T (A—1)
f@=—7

(35d)

(—1)Byys® T (s4—1)

Ma

|

=0

The constants Agsy1, Basr, Azj, and By, are determined from
the following matrices in the manner discussed in the mate-
rial following equation (32). The matrix for case I is

m
0 cos 36 do ) f o €08 (E_H) 6 db

f 6 cos 6 df .
-0 fi®) =0 J10)

-0, f10)

3 cos 6 df

5, fi0)

bm_, cos 0 df df
J;: f6)

—3

2

(36a)
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where
F1@®)=(1—2s* cos 20-}-s9 ﬂi:f[zl +/cos® §—cos? 4,
ﬂ:l
The matrix for case II is
. /m
fa, singdy (asin30dy [ sin (+1) 040
o fa6) o fi(@) o 260
% sin 0 df ) ...
by f2(0)
(36b)
f %m/2 SIN 0 dB
a-_l fﬂ(a)
where
mf2
J26)=(@1—2¢* cos 26-}-59) I[1 +/cos? 6,—cos® §
aﬂ'l
The matrix for case III is
_ m —
J“’l de % cos 20 df o COS (7-]—1)0
. fi® J-a 71O o f—o: J10)
% dp
A
(36¢)
Omp2 dg
where

mf2
FLO=(1—2s? cos 26-}-59 II1 cos*9—cos%,
y-

The matrix for case IV is

. /m
asin20ds (Psind9d) f&sm<'z‘+1>”d"
P () o S0 8 Ja®)
f" sin 26 df . .. .
A C)

f"!".-d sin 26 dg
on_ J2(0)

36d)
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where

£1@=(1—28* cos 20-s) TL /c0sT,—cos%
g=1

Solution for symmetrically loaded wings.—Symmetrically
loaded wings can be assumed to be made up of vortex pairs
of circulation —dI' and dI'. Since the circulation can be
expressed as I'yf(z) where T\ is the circulation at the point
2=0, the strength of each pair becomes

dr=Tof (z)dz 37)

This value of the circulation may be substituted into equa-
tion (34) to give the contribution of each elemental vortex
to the total flow. Itis then necessarytointegrate the equation
over the entire span to obtain the flow, or

(D) =n[" r@ (), 39)

where (dw/dz)y is the complex velocity of the nonuniformly
loaded wing, and (dw/dz)y is the complex velocity (eq. (34))
of the uniformly loaded wing with z substituted for s and
& circulation of unity.

Corrections for interference due to lift,—The interference
complex-velocity field at the far-downstream position is
determined by subtracting the complex velocity of the free
field from the complex velocity of the constrained field, or

dw; dw 0 28T

&z —dz T 7= (39)

A useful parameter which indicates the effect of slotting &
tunnel is the ratio of the interference of that tunnel to the
interference of & closed tunnel. This parameter, which is
the same at the far-downstream position as at the model
and which will be called the quality factor %, can be expressed
mathematically as follows:

dw 28T

dz 1!'(?—82)

k= dw
wie
2] (22—8’)

(40)

where dwg/dz is the complex velocity of the closed-
tunnel configuration.

Once the values of k are determined as a function of the
semispan & for & specific tunnel, the interference can be cal-
culated. It is shown in reference 7 that the interference on
the lift can be expressed as an angle which may be added
to the measured angle of attack to obtain the true or free-
flight angle of attack. Reference 7 gives the correction
angle in radians as

8SCy,
€r— 0

41)

where § is a factor which is determined from the geometry
of the tunnel configuration, S is the wing area, C the tunnel
ares, and Oy, the lift coefficient. Also from reference 7, the
increment which must be added to the measured drag to
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obtain the correct drag is

ACp,=5 SO

C

In the case of the slotted tunnel, it is convenient to use the
quality factor % and then express the two corrections as

42)

and
3
AC,=ks SgL (44)

where 5 can be determined from the literature on lift inter-
ference of closed tunmnels.

Solution and interference quality factors for tunnels with
cross sections other than circular.—The solution of the wall-
interference problem for tunnels having cross sections other
than circular can be obtained by following the method of
paragraph 14.6, reference 8. This method requires that a
function z=7({) be found which will conformally transform
the interior of the tunnel cross section in the z-plane into
the interior of the unit circle [¢|=1 in the ¢{-plane. It is
also necessary that f/(¢) does not vanish or become infinite
in the unit circle |{|=1. The complex velocity of the
tunnel in the z-plane is then

45)

In the function dw/d¢ of equation (45), the 6,’s which de-
termine the slot edges of the ¢-plane are the transformed
values of the slot edges in the z-plane and the values of [ in
the ¢-plane are also determined from the transformations of
the points s in the z-plane. Once these values are deter-
mined for the transformed tunnel in the ¢-plane, the velocity
field dw/d¢ in the ¢-plane may be computed. The velocities
in the z-plane may then be computed by equation (45).

The interference and the quality factor may now be de-
duced from equation (45). Subtracting the free field from
the complex velocity given in equation (45) gives for the
interference velocity

dw, dwdg, T

Tz —dt &2 nF—o) (46)

The interference for any tunnel can be determined from this
equation; however, in many cages, the use of & quality factor
may be more convenient. The quality factor for this class
of tunnels can be written

dw d¢
dt dz ‘ r(z’—s’)
ar dz = (-8

where dwg/dt represents the complex velocity of the trans-
formation of the closed tunnel in the {-plane.

A simplification of equation (47) can be made in case the
transformation f({) may be approximated by c¢ for points
near the center of the tunnel. If g is sufficiently small, its
value in the {-plane may therefore be represented by s=cl,

(47)
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where ! represents the distance to the point which locates
the transformation of the tip vortex in the {-plane. Sub-
stituting these approximations into equation (47) gives for
the quality factor:

dwl 6 2l dw, dr

b 05 o @Ol _ Tt D)
Qwgl, @b dwg, AT @8
a C
@ oTAer—ah & @D

Equation (48) shows that the quality factor near the center
of the original tunnel in the z-plane is approximately equal
to the quality factor of the corresponding circular tunnel
in the ¢-plane. Thus, to obtain the interference, only the
quality factor of the circular tunnel needs to be computed,
provided the interference of the original closed tunnel is
known and the approximation z=c! is valid throughout the
region in which the model is located.

APPLICATIONS OF THEORY TO VARIOUS TUNNELS

Two slots located symmetrically across the x-axis.—Tun-
nels which have two slots located symmetrically across the
z-axis (fig. 2(a)) are treated under case IV. Thus, their
complex velocity field may be expressed by equation (34)
and equation (35d) where 7 takes the values 0 and 1. Since
tha integrals across the two panels are identically zero, the
matrix of the integrals has no meaning and hence is not used.
With these considerations the complex velocity may now
be written

dw_ s (1—8*)+/s*—2s" cos 26,+1 B,(2*—1)
dz  x(2—8%)(1—2%%)/z*—22° cos 26,11 B,(s'*—1)

(49)

The wall interference is determioced by subtracting the
complex velocity for the free field from equation (49), or

—1:| (50)

The quality factor k is determined by dividing equation (50)
by the closed-tunnel interference which is

1—sH(1+2)
r(z’——s’)[ T 1:| (51)

dwr__ isT (1—2%+/s*—283 cos 26,1
dz m(Z—8%) L (1—22s%)+/2*—22° cos 26,+1

or

— 24 /8%—28* cos 26,41
(1 2%8%)+/2'—22% cos 20 +1
(1—2%%

This function can be written

(52)

3 (1—29+/s*—24% cos 26,1 —(1—2%%)+/2*—22° cos 26,+1
(2—8%)+/2'—22* cos 26,1

(53)

The effects of the slots on the interference along the span of
the model are obtained by substituting z for z; then,

— 1) +/s'—257 cos 26, +1—(1—2%8%)+/2*—22* cos 20,+1
(£*—8%)+/x*—22% cos 26,}1

k

(59
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(a) Case IV (b) Case IIT;
2 slots, p=1. 2 slots, p=1.
(¢) Casel; (d) Case 1I;
47 slots, p=1. 4j slots, p=1.
(e) Case IIT; (f) Case IV;
2(2j+1) slots, p=t. 2(27+1) slots, p=1.
(g) SBingle slot. (h) Single slot.

Fiaure 2.—Various symmetrical slot configurations investigated for the
lift interference.

If z and s are sufficiently small'so that the approximation

Vzt—2a® cos 26,-+1=1—2" cos 201+%4 sin? 26,
is valid, then

2 cos 26,—22*— (2% "sin’ 26,

= 2 cos 26, z* sin® 26,

(55)

The quality factor is seen to be insensitive to values of either
z or 8, so that for this tunnel with relatively small models
(8=0.25 or less) the effect of slotting the tunnel on the lift
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of any model may be obtained by multiplying the closed-
tunnel interference for that model by the slotted-tunnel
quality factor.

Pistolesi (vef. 5) shows that the interference quality factor
for this tunnel with a vortex doublet in the center is, in the
notation of this report, cos 26,. Equation (55) reduces to
the same value when z and b are set equal to zero.

Two slots located symmetrieally across the y-axis.—Tun-
nels which have two slots located symmetrically across the
y-axis (fig. 2(b)) are treated under case III (see eq. (35¢)).
Thus, their complex velocity may be expressed by equation
(34) with f(2) given by expression (35¢), so that it can be
written

dw  —isP(1—89/8'—28% cos 26, +1[24 07— A1+ 29]
dz  m(2—g)(1— %92 —22° cos 20;+1[24 8*—A,(1+8%]
(56)

where A, and A; are determined from the matrix (36¢) and

are
&1 cos 26 df
A= f 57
o -6, (1—2s% cos 28-}8%+/cos?d—cos’f; (67
o ds
A =f ' 58
! -6, (1—28° cos 28-1-89+/cos’—cos?f; (58)

REPORT 1221—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

If z and s are considered small, the complex velocity of
this field may be approximated by

dwr 18T (A8 —2409+(1—6%)(4:—24,2") cos 26,
dz =« (A:—2480(1—2%%

from which the quality factor becomes approximately

(An#— 249+ (—89(Ay—2405) o8 20,
= L2457 0

which reduces for z=8=0 to

(59)

k=—%°+cos 20, (61)
2

This quality factor is the same as the one presented in
reference 5, with the necessary change of sign to adapt it to
the notation of this report.

Tunnel with 47 slots located symmetrically with respect
to the x- and y-axes.—Tunnels with 4;j slots located sym-
metrically with respect to the 2- and y-axes can have either
the symmetry of case I (eq. (35a), fig. 2(c)), if panels inter-
sect both axes, or of case IT (eq. (35b), fig. 2(d)), if slots
intersect both axes. Thus, the complex velocity cen be
expressed by equation (84) with f(z) given by either equation
(352) or (35b), depending on the desired slot configuration.
As an example, the complex velocity for a tunnel containing
four slots with panels intersecting both axes may be written

aw

—@ra—sﬁ(a1:11434—232 e 20,+1>L‘112’(z2+1)—A3(z"+1)]

(62)

dz

where A4, and .4; are determined from equation (36a) and
are expressed as

_ J’ b1 cos 30df
= 3
—1 (1—2¢? cos 20489 II +/cos?0—cos™ (63e)
g=1
and
61 cos 6.d8

A3=

2
~%1 (1—2¢* cos 26-}-89) I y/cos®—cos, (63b)
g=1

If the tunnel contains eight slots with panels intersecting
both axes,

4
i —asT'(1—s%) I +/s*—28? cos 26,+1
W gm=1

dz

X

7 (Z2—sH(1—2%H f[ +/28—22% cos 26,11
g=1

4,2 (2 1) — 4.2 (@D +4:(2°1 D
A ) — A @ D) A5 6 1)

where .4;, 4;, and A; are equal to the determinants remaining
when the first, second, and third columns, respectively, are
removed from the following matrix:

6 cosdd f’x cos 36 df fﬂn cos 56 d6

(64

-0, Ji0) A0 - f1®

(651)
s cos § do fﬂacos30d0 f’:cos50d8
o f100) A () oo H(O)

w(z*—sf)a—z*s’)(ﬂﬁr.yz*—zz* 505 0,1 ) A6+ 1)—As(*+ 1)

where
4
f,(0)=(1—2¢% cos 26-}-5% I[1 cos® 6—cos® §, (65b)
g-

If the tunnel contains 12 slots with panels intersecting
both axes,

6
— T (1—s 1111/84—28’ cos 26,11
g:l

dw

dz X

7 () (1— 259 ﬁl JF =32 con 2,1
p-

A28 (F 1) —As2* (01D 452" (214 1) —4q (M +1)
A8 (8™ H1) — A8t (% 1)+ A 8% (04 1) — A, (s"+1)
where A4;, 4;, 45, and A, are equal to the determinanis

remaining when the first, second, third, or fourth columns,
respectively, are removed from the following matrix:

(66)

™ ("% cos 8df 6 cos 36d8 81 cos 50d8 % cos 70d9 T
-8, fl (0) -6 fl (0) -8 fl (0) =0 fl (0)
83 cos 9db o cos 30d0 85 cos 59d8 9 cos 70dD
63 f 1 (9) ) f 1 (0) 03 fl (0) ] 71 zﬁ)
65 cos 6df 9 cos 30d6 % cos 50d0 9% cos 70d0
| J 9 fl (0) (N fl (0) 04 fl (0) 71 fl (85 .
672)
where

f1(@)=(1—2s cos 26-}s% ]tfs[lq,/cos2 8—cos? 0, 67b)
g:l
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If the slots are of equal width and evenly spaced, equations
(62), (64), and (66) can be simplified by substituting the
terms

+Y1—22" cos 26,+ 2=
and

+1—28™ cos 26,1+ s>
for the multiple products in equations (62), (64), and (66),
and

o

2 0 cost

\/cos 5 0—cos 3 0,

for the multiple products in equations (63s), (63b), (65b),
and (67b). With these substitutions the limits of the
integrals in the second row of the matrix (65a) are changed to

%-—Bl for the lower limit and %+01 for the upper limit, and
those of the second and third rows in the matrix (67a) are
changed to %-—0, and %-—01 for the lower limits and %—1—01 and

§+01 for the upper limits.
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The interference in these tunnels is obtained by computing
the velocity and subtracting the free-field velocities, then
dividing by ¥ since the computed fields are for a great
distance downstream and (see ref. 6) the interference veloci-
ties at the model are one-half those downstream.

Tunnels with 2(2j4-1) slots located symmetrically with
respect to both axes.—Tunnels with 2(2j+1) slots located
symmetrically with respect to the z- and y-axes can have the
symmetry of slot location of either case ITT (expression (35c),
fig. 2 (e)), with a panel intercepting the z-axis and a slot
intercepting the y-axis, or of case IV (expression (35d),
fig. 2 (f)), with a slot intercepting the z-axis and a panel
intercepting the y-axis. Thus, the complex velocity may
be expressed by equation (34) with f(z) given by either
equation (35c) or (35d), depending upon the desired con-
figuration. As examples of this class and of the simplifi-
cation due to evenly spaced slots of equal width, the complex-
velocity fields for tunnels containing six evenly spaced
slots of equal width can be written for case ITI, where
panels are on the z-axis,

dw_ —isT(1—s9+/s5—25° 08 B0, [2A02A—As2X (1) +A (A1)

68
42 r(22—g%)(1— %89 /25—22° cos 60,1 [2Aes'—A 8284 1) +A (5 +1)] ©8)
where 4y, A,, and A, are evaluated from the following matrix where
by the same methods used in equation (64):
f r df f %1 cos 20 db f %1 cos 46 df F1®)=(1—25* cos 205 +/cos® 36—cos? 36, (69b)
-0, 1@ PR () -s, 110
' 692) For case IV (fig. 2 (f)), where slots are on the z-axis,
f%%_& J‘%"H’cos%dﬁ 3 cos 48 db
I_ Ia J10) Ia J:0) x4 H®
dw_ —isD(1—89+/8"—24% cos 60,+1 [Bs2%(2'—1)—B,(z2—1)] @0)
42 r(P—g%)(1— %) /2% —22° cos 60,1 [Bas*(8*—1)— B, —1)]

where B, and B; are determined from equation 36 (d) and
are expressed as

X8 .
B= 3 1 sin 29 d§ (718)
6 (1—2s* cos 2089 +/cos® 39,—cos® 30
and
X s .
3 ! sin 40 d (71b)

B,=
= Ja (1—25% cos 2689 +/cos? 36;—cos? 30

The interferences are determined as in the previous
sections,

Equations (68) and (70) may be extended to 10, 14, . . .
4j+2 slots in the same manner that equation (62) was ex-
tended to include 8 and 12 slots.

Single slot located symmetrically across the x-axis.—Since
tunnels which have a single slot located symmetrically
across the z-axis (fig. 2 (g)) contain an odd number of slots,
summation (17) rather than (11) must be used in equation
(14), which, when expressed for & single slot, becomes

an_# 23 (e P T o4bsin o 9)

T (22— (1—22 8’1,/cos 9—cos 6,

(72)

Equation (72) may be rewritten, with several modifications
after substituting z=e", as

dw_aoz(1+2)+a,(1 25+ i[bo2(l—2)+ b, (1 —29) (73)
dz V2 (P—8)(1—2%?) 1—2z cos 6,2

The constants in this case must be evaluated from the
circulation about the poles at s and —s and the nonexistence
of sources at those points, as the potential condition is
automatically satisfied because the potential is constant
across a single slot. The circulation and nonexistence of

sources (eqs. (27) and (28)) may be expressed about the
pole & as

__2mi{aes(l+8)+a;(1+8) -+ i[bos(l —8)+ 8, (1 —s)] }
V2 28(1—89yI—2s cos 6,152

and about the pole —s as

T+io=

74a

2mi{ ap(—8)(1—8) +a1(1 483 +-1[bo(—8)(1+8)+ b, (1—s9)] }
V2(—28)(1—s9/1-+2s cos s;+5*

I'tio=
(74b)
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If there are to be no sources at the poles, ¢ must equal zero. It may be seen from inspection that ¢, and a; are equal to
zero and that b, and b; have solutions other than zero. When these solutions for b, and b, are substituted into equation

(73), it becomes

dw —8T

dz % (22—82) (1’—2282) m{[&‘ (1+8) 1/1—28 cos 01+8’+8 (1—8) -\,/1+28 Ccos 01+82] 2(1—2)+

[—(1—#% V1§28 cos 6,8+ (1155 y1—2s cos 6,+s7] (1—23)} ) (75)

The interference velocity is determined as before by subtracting the freefield velocity —sT'/w(2*>—s?); hence, the inter-

ference complex velocity is

de_ - 'i8r

dz  2gr (22—s%) (1—2%%) 1—22z cos 6,2

[s 0 48) ¥1—28 cos 8, Fs*8 (1—s) 41128 cos 6,487 =z (1—2)+-

[(148%) v1T—25 cos 6,4-85—(1—&%) Y1128 cos 6,8] (1—2)—2s (1 —2%?) /I—2z cos 01+z’} (76)

The quality factor % is determined by dividing equation (76) by the closed-tunnel interference velocity, which is

—4sT/x(1—2%%). After performing this operation and combining & number of terms, the quality factor & may be written

1
k % (22—'82) -J]:?:Z_GOSBI_'I-? [(1+8) (1—2) (Z—I—S) (1+28) '\ll—'28 cos 31+82—(1—'8) (1—2) (2'—‘8) (1"—'28) V1+28 [0}:) 91+8’—'

2s (1—2%%) 4/1—2z cos 6;}+ 2%

(77

This factor can be checked by letting 6,=0°, which represents a closed tunnel, for which % can be shown to be equal to +1;
and if 6,=180°, which represents the open tunnel, then % can be shown to be equal to —1.

Equation (77) can be considerably simplified by using the
following approximations, in which z (or 8) is assumed to be
small with respect to 1:

2 o139
4/1—22 cos 6+ 22=1—2z cos 6,-}-z sn; b (78

and

N2
1428 cos 6,F8*=1-4}-3 cos §,-}8* s“; 2 (79)

After multiplication and collection of terms, equation (77)
simplifies with the use of equations (78) and (79) to

In2 in2
cos Bl—su; h_, [1—{-8’ (1 AN s’; 0‘)]

33
1—z cos 6,4 su; 2

k= (80)

If terms of the order £* and higher are eliminated, equation
(80) meay be approximated with

lc=——-12- {1—2 cos 6,—cos® 6, 2 [2s*}(2—cos 6y) sin® 6,] }
@81

Equation (81) shows that the interference of this tunnel has
an odd function component along the z-axis which will
produce & variation in the effective angle of attack that will
cause the model to have a rolling moment. Since extension
of flow fields of this type (an odd number of slots symmetri-
cally located with respect to the z-axis) to greater numbers of
slots will not eliminate the odd powers of 2z, the rolling

moments will continue to exist. It is therefore to be con-
cluded that tunnels containing an odd number of slots
symmetrically located with respect to the 2-axis introduce
an extraneous moment into the data.

Single slot located symmetrically across the y-axis.—Ifor
tunnels which have a single slot located symmetrically
across the y-axis (fig. 2(h)) summation (17) is again used
rather than (11) because of the odd number of slots. This
summation when used in equation (15) results in the proper
slot symmetry, and the complex velocity can therefore be
expressed as
dw ’ , o COS t—2?+a1 cos 370-1- bo sin, g+ by sin %‘2

dz (F—s)(1—2%)

+/sin $#—sin 6,
(82)

Since z=¢®, the complex velocity may be rewritten after
substitution and combining various terms as

dw_ (149 a2+ 2+ a1+ 2+ beiz(l— 2+ bii(l— 2)] -
dz 2(—8%) (1 —22%)+/1—2172 sin 6,—2°

The constants ay, a;, by, and b; must now be evaluated
from the circulation about each of the poles and the condition
of continuity. The two conditions about each pole may be
expressed as

,56_27"”5 (1+1) [aes (1 4-8)+a1 (1 +89) +bois (1 —8)+ byt (1 —6°)]
48(1—8%+/1—27s sin. ;—s*

T+
(84a)
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about the pole & and

—Iis 211149 [—aes(l—8)+-a:(1—s)—bois(1+8)+bii(l 4]
—48(1—8%+/14-24s sin §,—s?

(84b)

about the pole —s. The strength ¢ must equal zero in order
to satisfy the condition of nonexistence of sources. In
order to simplify the rationalization of equations (84), the
following substitutions are made:

O+iD=+/1—s+-21s 8in 6,
O—iD=+1—§"—2is sin 6, }
A1=as(1+8)+a, (1459
Az=—as(1—38)+a,(1—59
By=0bps(1—8)+b,(1—s?
By=—bos(1+8)+b: 1+
A=__28I‘ (1—s9+/1—2¢* cos 20,-}s*

T

(85a)

Also let

- (85hb)

7

The four simultaneous equations (84) can now be written,
after rationalizing the denominator,

A=R.P.(1—9(C+iD)(A:+By)
0=I.P.(1—%)(C+-iD)(4,+}1B,)

(86)
A=R.P.(1—1)(C—D)(As+iBj)
0=IL.P.(1—%) (C—1iD) (A3} 1B>)
which may be restated as
A=4,(C+D)+B:(C—D)
=—A4, (O_D) +B, (0+D)
@87

A=A4,(C—D)+B:(C+D)
0=—A4,(C+D)+Bs(C—D)

If A; and B, are determined from the first two and 4, and
B; from the last two of equations (87), it may be seen that

ACHD) _, _
2(07+D2) =4,= a8 (148)4-a; (1 +6° (385
%__H@)ﬂ,:—aosa—s)wla—s”)

373
AC-D)_, _ _
W—Bl—bwa 8)+b;(1—s%) sy
Sy Br=—bs A+9+5,a+)

Equations (88a) when solved for @, and @; and equations
(88b) when solved for b, and b; give

4 (C+D)(1—s)—(C—D)(1+s")

“=orD 4s(I—s9 (89a)

@ OZiDZ (O+D)8(128?1t§)—p)8(1+8) (89b)

by G CODED__

By C"iD’ (C’+D)8(lzsszl+_(g)—1?)s(l+s) (89d)
Equations (89) may be simplified to

o= b s (%00)

b s (90D

Letting ay=—>a, and @;=5,, the complex velocity equation
(83) may be rewritten

dw _ 2[z(ata:2)+i(@’+a)] o
&z 2(Z—¢) (1—Z6)/1—2iz sim 6,— 2 (1)

Substituting for a, and a, from equations (90) gives

dw_24{2[D—Cs+s(C—De)1+ils(C—D) +(D—Cs) #1}

dz  4(C*+DHs(1—s9) (22—s) (1— %)+ 1—2iz sin ,— 2
(92)

Now it may be shown that

A=—2L 1—e9(C*+D" (93)
g0 that

dw T2l[0— 08“)+8(0—D8)z2]+z[8(0—D8)+(D —C5%) 2]

—_————

The interference velocity is obtained by subtracting —is I'/x(2*—s%), so that

8(C—Ds8)+- D —Cs¥)Z—iz[D—COs3+8(C—Ds) 2%

dz 1!‘(22—82){

8(1—2%7)/1 —j2iz sin ;— 2%

dz ™ (=) (1—2209)+1—2iz sinf—
(84)
where
O+iD=+1—&+2is sin 6,
1 (95)
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Now divide by the closed-tunnel interference to obtain the quality factor, so that

—isT  8(C—Ds)+(D—Cs¥)22—iz [D— Cs*+8(0—Ds) 2| —s(1 — 2%%)+/1—2128in 6,— 2
A w(2*—s’) 8(1—2282)-V1—2’i28i1101——'23 (96)
—1sT [(1—3’)(1+z’) l:l
w(2—8° 1—2%*
or
E 8(C—Ds)+ (D — Cs%) 22—iz [D— Cs3+-8(C—Ds) 27 —s(1 — 269 /1—21z8in 6, — 2° 7

8(z*—89)+/1—21z8in ,—2?

The interference quality factor at the center of the tunnel
may be examined by letting z=0; then

=21 ©8)
From the evaluation of the constants, equation (94),
C=31—24% cos 26,--8° cos ¢ 99
D=31—2¢%os 26,1+ 4* sin ¥ (100)
where
y=% tan~* %ﬁ (101)

When s is small, equation (98) may be simplified by first
approximating C and D. These approximations are, for
small values of s,

C=1 -—%3 (cos 26,+-sin?6,) (102)

(103)

When the values for € and D given in equations (102) and
(103) are substituted into equation (98), it becomes

D=g sin 01

cos® g,
2

k=sin 6,-} (104
This equation also checks with the results given in reference
5, with the usual change in sign to conform with the notation
of this report.
Lift interference of rectangular tunnels.—The function
which transforms a rectangular tunnel into & circular tunnel
is given in paragraph 14.8, reference 8, as

sn%% dn 2‘25
§'=—‘n)\_7 (105)
a3
Az Az Az . o e .
where sn 5 dn 5 and cn -5 are Jacobian elliptic functions
of z and A/2 is defined by
» K K’

where K and 7K’ are the quarter periods and a and A are the
breadth and height of the tunnel. (See paragraphs 14.7 and
14.8 of ref. 8 for further information concerning these func-
tions.)

If @ and h are given, then X, K’, and m, the squared
modulus (see ref. 8, paragraph 14.8), are uniquely determined.

Once the constants, K, K’, and m are determined, the slot
location and the half-span length ! may be computed.
First, consider slots which are located on the top and bottom
of the tunnel (see fig. 1(b)). In reference 8, paragraph 14.8,
it is shown that the top of the tunnel may be expressed by

z=a:+1:2—h or Az=X\z+1K’. It is alzo shown that the trans-
formation (105) may also be expressed

l—en Az

P ={Fenrz (107)

so that the equation for the top of the tunnel becomes, in
the ¢-plane,
1+cen(zt+1K')

From reference 8, paragraph 14.8, cn(A2+4:K’) is equal to

(108

—m1?ds tAz, which will, for convenience, be called iu. Now,
on the circle,
1—au
— 210
g=é ¥ (109)
and if the real and imaginary portions are separated,
1—u® m—(dsM2)?
08 2=y = e (110)
or
. _ 2p  2dsMx 1
sin 26= (111)

T+ ym 1 @)
m

The 8,’s of the circular tunnel in the ¢-plane are determined
from the above equations by the locations of the slot edges
2, in the z-plane (see fig. 1(b)).

If the slots are on the side of the tunnel, a similar analysis

starting with z=g—l-iy or Az=K+i\y will show that

2i+/1—m sd (iry,m)
14+(1—m) [sd (ery,m))?

2+/1—m sd (Ay, 1—m)
1+(1—m) [sd Oy, 1 —m)]?
(112)

sin 24,

As before, equation (112) may be used to determine the
6,"s when the slot edges are functions of ¥.
The value of l is given in reference 8 as

1—en b

P=1 +ennd

(113)
With [ and the 6,’s known, the complex velocity of the tunnel
in the {-plane may now be computed, and the interference
may be determined from equation (46).
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The calculation of the interference for rectangular tunnels
may be simplified by applying the conclusion following
equation (48), which states that the quality factor of the
transformed tunnel is approximately equal to the quality
factor of the original tunnel, provided the transformation
function can be approximated with z=¢¢. Equation (105)
is shown in reference 8, paragraph 14.8, to be approximately
equnl to ¢{=2»z/2; hence the conclusmn followmg equation
(48) is valid for rectangular tunnels. Thus, it is necessary
only to determine the quality factor for the transformed
tunnel and to apply it to the correction for the fully closed
rectangular tunnel (see ref. 8, paragraph 14.8, for this
correction) to obtain the correction for the corresponding
slotted rectangular tunnel.

Circular tunnels having general slot configurations.—
Equation (16) is used to obtain the complex velocity for a
configuration which contains a general slot distribution.

The constants a, bl, op, ay, . . Cny and Bo, ﬁl, ..

375
Equation (16) may be written
dw P#@ cos 9+b, sin ) >f‘,(a.+iﬁa) cot"g

d
? (B—&H(1— z’s’)]l—‘/coti-—cotg’

where p has the same definition as given for equation (25).
If z is substituted for ¢ by using the relation z=¢", equation
(114) becomes

dw pz(‘“ 9z T, 262(“”'“‘9 ")< )

) B

Equation (115) may be reduced to
do P2+ b= 3 b i8I e D

(114)

(115)

2(#—s)(1—2') :ﬁl \/ ile+D—(z—1), cot
(116)

. Bx are determined in the same manner as was used for the sym-

metrical slot configurations; that is, the circulation about both poles is equal to T, the source strength ¢ is zero, and the
potential in each slot is equel to zero. The conditions on the circulation and source strength may be determined from the
line integral about the poles s and —s. For the pole at s,

2riplay(L+e)+ b0~ 3 (@t i8I0~ (Lo 5 (— 1)

T+tic p- = (117a)
4s8(1—s9 Hl\/i(s—l-l)—(s—l) cotg"
o=
and for the pole at —s,
2miplay(L-Fe)+iby(1—s)] 2 (et B (L 8= "L —)in(— 1=
I+4ioc= p— = (117b)
48(1—s8% Hl\/;(l—s)—l—(l-l-s) cotj?g
o=
The condition on the potential in each slot may be determined from integrating the velocity over each panel,-or
[ @ cos 0-+8,5in 0) 35 (et i) cotn |do
=f = (117¢)

: ]
(1—25? cos 28-}-39 ]1 —‘/cotg cot%

The constants a;, by, o, a1, . . . s, and By, Bi, - . . B
are determined from the solution of the set of simultaneous
equations (117). Once the constants are determined, the
complex velocity may be determined, and the interference
may then be computed in the same manner as was used for
the various symmetrical cases.

RESULTS AND DISCUSSION

INTERFERENCE QUALITY FACTORS FOR SEVERAL CIRCULAR TUNNELS
WITH SYMMETRICALLY LOCATED, EVENLY SPACED SLOTS

The quality factors for circular tunnels containing various
syminetrically located, evenly spaced slots of equal length
and wings of very small span (3—0) are given in figure 3.
The curves for tunnels that have panels across the z-axis and

413072—67—205

contain 4, 8, or 12 slots are calculated from the formula

cos <m+l> 6ds
f \/cos B g—cos* 24

2

f cos (—-—1) 0de
\/ cos? 2 §—cos? 77;01

where 6 is defined in figure 1 and m is the number of slots.
Equation (118) may be derived by considering the value of
equation (34), expressed for symmetrically located, evenly
spaced slots of equal width, when ¢ and z are equal to zero.
It is also the negative of the relation given in reference 5 for
the same tunnel configurations, the minus sign being used to
conform with the notation of this report.

118
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Figure 3.—Quality factors for small-span wings (s—0) in circular
tunnels containing various numbers of evenly spaced slots of equal
length.

An analysis of figure 3 shows that, for all configurations
except the one with two slots across the z-axis, only a small
percentage of the tunnel wall must be opened in order to
obtain no interference at the center of 2 small model and
that the amount of opening required rapidly becomes smaller
when the number of slots is increased. It is also noted that
the change in quality factor is very rapid at the null-inter-
ference condition, so that an accurate estimate of the inter-
ference is difficult.

The importance of slot location in determining the quality
factor is indicated by the large divergence of the two curves
for tunnels containing two slots. It can be shown, however,
by comparing the quality-factor functions for the conditions
of slots across the 2- and y-axes and panels across the z- and
y-axes, that as the number of slots increases, the quality
factors will approach each other. Since the quality factors
approach each other, it may be expected that the quality-
factor curves for tunnels containing 8 or 12 evenly spaced
slots of equal length will be approximately correct for any
slot location. Thus, the quality factor should be approxi-
mately correct, even though the model is rolled in the tunnel.

VARIATION OF QUALITY FACTOR WITH SPAN OF MODEL

The effect of model span on the quality factor k at the
center of several slotted tunnels is shown in figure 4. Exam-
ination of the curves shows that the quality factor is fairly
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Fiaure 4.—Variation of the quality factor at the center of the model
with the span of the model.

constant over an appreciable range of spans, in that it does
not vary more than 10 percent for spans of 0.5 to 0.6 of the
tunnel diameter or width. The quality factor for the tunnel
containing two slots is seen to vary more, in that the quality
factor changes 0.10 for a change in the span from zero to 0.46
of the tunnel diameter. The quality factor of the single slot,
however, is seen to remain fairly constant regardless of span.

The spanwise variations of the quality factor for a model
with a span of 0.75 of the tunnel diameter is shown in figure 6.
This figure shows that the quality factor for the tunnels con-
taining 8 or 12 slots is about 0.3 larger at the wing tips than
it is at the center, whereas for the tunnel containing two slots
it decreases about 0.6. These changes indicate that the
spanwise change in % can depend upon the boundary condi-
tion at the intersection of the wall and z-axis; that is, if a
panel intersects the z-axis, £ will become larger, and if a slot
intersects the z-axis, k will become smaller. Such a tendency
would be difficult to prove, however, so that an analysis of
the variation in % for any particular tunnel would require a
computation of %k along the span for that model. These
variations in k also indicate that the lift corrections for a
model with & span as great as 0.75 of the tunnel diameter can
be roughly approximated by using the value of & at the center
of the tunnel; however, & more accurate correction would
involve the use of an average value for k as well as an average
of the load over the span.
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Fiaure 5.—Variation of the quality factor along the span in several
tunnels containing equally spaced, symmetrically located slots of
equal length, 5=0.75D.

A résumé of the observations made from figures 4 and 5
indicates that, for these specific slot configurations at least,
tHe quality factors for tunnels containing 8 or 12 slots, pro-
vided they are symmetrically located, equally spaced, and
of equal length, are more nearly constant throughout a
greater portion of the central region of the tunnel than are
the quality factors in tunnels containing two slots. The
fact that the quality factor is moderately constant even at
spans of 0.75 permits the correction for lift interference to
be made by computing the interference of the closed tunnel
having the same cross section and then multiplying that
interference by the quality factor for the center of the slotted
tunnel.

QUALITY FACTORS IN TUNNELS CONTAINING A SINGLE SLOT

The variation of the quality factor with percentage of
wall open in & tunnel containing a single slot symmetrically
located with respect to the z-axis is shown in equation (80)
and in figure 6 to be somewhat different from those previ-
ously studied in that % is greater on the half-span of the
wing which points toward the panel and is smaller on the
side which points toward the slot. This variation of &k means
that a spanwise variation in angle of attack exists which
would cause the model to roll. Thus, & tunnel of this type,
" that is, & single slot symmetrically located with respect to
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F1eure 6.—Quality factors for a tunnel containing a single slot with a
model of span equal to one-half the tunnel diameter.

the z-axis, has interferences which are more difficult to cor-
rect for because of the introduction of an unnecessary roll-
ing moment into the measured data.

This rolling moment does not exist, however, if the slot
is symmetrically located with respect to the y-axis. It is
gshown in equation (97), however, that the induced velocities
will not be normal to the span but will have a small compo-
nent along the span. Such a component should not affect
the total forces seriously, since it would not affect the total
induced velocity. However, the effects of this component
should perhaps be considered in the treatment of load dis-
tributions along the span. Thus, the pecularities of the in-
terference effects of tunnels containing a single slot symmet-
rically located with respect to either axis indicate that its
effects will be more difficult to correct.

If the equations for the single-slot case are extended to a
larger odd number of evenly spaced, equal-width slots, it
can be expected that both the rolling moment and the cross
flows will become smaller because the walls create a more
uniform interference field at the model.

EFFECTS OF COMPRESSIBILITY ON THE CORRECTIONS

It is shown in reference 9 that the lift due to compressible
flow can be corrected in exactly the same manner as though
the flow were incompressible. Thus, neither the % nor the &
of equations (43) and (44) is a function of compressibility.
Since the arguments used in reference 9 are based on sub-
sonic linearized compressible flow, it may be expected that
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corrections can be made for the critical or slightly higher
Mach numbers.
APPLICABILITY OF THE THEORY

Several of the differences between the idealized and the
actual problem are those due to viscosity, which causes a
mixing region in the neighborhood of the slot rather than
the assumed constant pressure surface which divides the high-
velocity tunnel air and the stagnant tank air. Since the
mixing region involves various complicated phenomena such
as turbulence, velocity gradients, separation at the outer
slot edges, and differences in boundary conditions in different
slots depending upon the direction of flow through the slots,
it is very likely that its effects on the Iift interference will
have to be determined from analysis of experimental data
(for example, ref. 10).

Another effect of viscosity which becomes important if
the slots are narrow and deep is the friction on the air as it
flows through the slots. Since the friction reduces the
smount of flow through the slots, they will effectively be-
come narrower, so that the quality factor may be expected
to become larger.

The possibility also exists that, in an actual tunnel, the
pressures may not be equal in all the slots and the slot
pressures may not be equal to the pressure in the tank. Tt
would be expected that if the difference between the pres-
sure in the slot and that in the tank causes more flow through
the slot than occurs in the ideal tunnel, the slot will effec-
tively be wider and if the difference decreases the flow, the
slot will effectively be narrower. Thus, the actual quality
factor will depend upon the effective slot widths as deter-
mined by the pressure increments.

Other differences occur because a practical tunnel cannot
be constructed like the ideal tunnel. These differences in-
volve finite slot lengths, variable-width slots, and lips on the
slot edges. In considering the effects of finite slot lengths,
it seems reasonable to assume that those effects should be no
more serious than the effects of a finife-length open tunnel.
In reference 11, it is shown that the theoretical lift corrections
for an infinitely long open tunnel are adequate, provided the
model is located a distance of at least one-half the tunnel
height from the entrance and exit regions. Therefore, if the
slot configuration is such that the width is constant over a
section whose length is at least equal to tunnel height, the
theoretical corrections should be adequate even though the
slot width may vary considerably outside that region. The
effect of lips on the slots may be shown qualitatively by
comparing the pressure gradients of the two types of slot
configurations, that is, with and without lips. Since the lips
confine the flow, the pressure gradient in that configuration
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is less steep through the slot than if there were no lips.
Therefore, the velocity may be expected to be lower, so that
the effective width of the slots will be reduced and the
quality factor thereby increased.

CONCLUSIONS

An analysis of the equations which represent the inter-
ference on the trailing-vortex system of & uniformly loaded
wing, due to wind-tunnel walls with mixed open and closed
boundaries, has shown that:

1. Slot openings of the order of 7 percent of the tunnel
periphery for four evenly spaced slots of equal length, and
less for larger numbers of slots, are required to reduce the
interference on a lifting model to zero. The zero-inter-
ference quality factor, which is defined as the ratio of the
interference of & slotted tunnel to the interference of a closed
tunnel, is critical with respect to the percentage of wall open-
ing, inasmuch as a small change in wall opening will cause
an appreciable change in the quality factor when its value is
near zero.

2. The tunnels which contain two symmetrically located
slots showed quite different values of the interference for
different slot locations. The differences in interference
became smaller as the number of slots increased.

3. In the tunnels examined, a region is noted to exist about
the center of the tunnel in which the ratio of the slotted-
tunnel interference to the closed-tunnel interference was
fairly constant, so that in order to obtain the corrections for
the effects of a slotted tunnel it is necessary only to multiply
the closed-tunnel interference by & constant.

4. The region in which the ratio of the slotted-tunnel inter-
fereace to the closed-tunnel interference is reasonably uniform
was found to be larger for the tunnels containing 8 or 12 slots
than for those containing 2 slots.

5. An examination of tunnels containing a single slot
showed that this slot produced 2 rolling moment or a cross
flow on the model. Either or both of these phenomena may
be expected for tunnels containing a larger odd number of
evenly spaced, equal-width slots. These effects should, how-
ever, decrease as the number of slots increases. Similar
interference may also be expected for any case in which the
slots are asymmetrically arranged with respect to the model
axes.

6. An analysis of the effects of compressibility shows that
the quality factor is relatively unaffected by compressibility
throughout the subsonic region.

LANGLEY ABRONATUTICAL LLABORATORY,
NaTioNaL Apvisory CoMMITTEE FOR ABRONAUTICS,
LancrLey FieLp, Va., February 3, 18563.
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